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ONE-DIMENSIONAL GALERKIN METHODS AND
SUPERCONVERGENCE AT INTERIOR NODAL POINTS*

MIENTE BAKKERf*

Abstract. In the case of one-dimensional Galerkin methods the phenomenon of superconvergence at
the knots has been known for years [5], [7]. In this paper, a minor kind of superconvergence at specific
points inside the segments of the partition is discussed for two classes of Galerkin methods: the Ritz-Galerkin
method for 2mth order self-adjoint boundary problems and the collocation method for arbitrary mth order
boundary problems. These interior points are the zeros of the Jacobi polynomial P (o) shifted to the
segments of the partition; n = k+1—2m, where k is the degree of the finite element space. The order of
convergence at these points is k +2, one order better than the optimal order of convergence. Also, it can
be proved that the derivative of the finite element solution is superconvergent of O(hk“) at the zeros of
the Jacobi polynomial P;;1™ " (g) shifted to the segments of the partition. This is one order better than
the optimal order of convergence for the derivative.
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1. Introduction. We consider the two-point boundary problem
(1.1) =(p(x)y") +q(x)y=f(x), xe[-1,+1]=IL  y(£1)=0,
where p(x)>0, qg(x)=0 and f(x) are sufficiently smooth. Let

A={-1=xo<x;<---<xy=1},

(1.2) y=-1+hj, j=0,--+,N, h=2/N,

Ii=[xj—1,xi], j=1---,N
be a uniform partition of I and define M §°(A) by
(1.3) M (D) ={V|VeC°(); VeP),j=1,--+,N; V(x1)=0}

where for any interval E, P, (E) denotes the space of polynomials of degree k restricted
to E. Then the finite element approximation Y e M ©0(A) of y is determined by

(1.4) (pY', V)+@Y, V)=(f, V), VeMs’(),
where (-, -) denotes the L*(I') inner product. It has the following convergence proper-
ties [7]

w5 ly-Yh=Cih** " ylksr, 1=0,1,

ly =)= Cohylsr,  j=1,--+,N-1,

where C; and C; are positive constants and where

! N . 1/2
leli=] £ @%0w)] ,  1=0,
i=0

(1.6) )

_d
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Also, it is known [3] that for specific points inside I, Y has the error bound

ly = V)&l =Cy)h"™?,
(1.7)

f,-1=x,-_1+§(1+0',), l=1,"‘,k“1, f=1,"',N,

where o1, - - -, 0k are the zeros of Pi(c) and Pr(o) is the kth degree Legendre
polynomial. This is one order better than the optimal error bound which is of O (A ke

It is this phenomenon of so-called interior superconvergence on which we will
concentrate our attention. In the next two sections, we will treat two classes of finite
element methods where this occurs: the Ritz-Galerkin and the collocation method
[8]. Also, we will use that superconvergence to give a new proof of the superconver-
gence of the derivative at other Gaussian points [9].

Before that, we give some definitions we need throughout this paper.

For any E = I and m =0, we define

. 12
lollerme) = [120 (D'v, D’v)Lz(m] ,

m
||U”w"‘u-:) = IZ.O “DlU”L‘”(E)a

W™E)={v|Dv e L°(E),[=0,---.m};
H™E)={v|DveL*E), =0, --,m}

(1.8)

Also, we define the A-related norms

N m . . 1/2
llma=| £ £ @% Do)n]
i=11=
(1.9)
l[vlwmay= max ||U||W'"(I,)-
j=1,-N
Finally, throughout this paper, C, C;, etc. will be positive constants, not the same at
each occurrence.

2. The Ritz—Galerkin method. Consider the 2mth order two-point boundary
problem

Lu sli (-1 D' [p(x)Du]=fGx), xel,

@.1) l
Du(x1)=0, [=0, - ,m~1,

where po, - -+, pm and f are such that u € H*(I), for some s = 2m, and that there exists
some C >0 with the property

B(v,v)=Cl|Z, veHg (I),
2.2) Bw,0)= 3 (D' DY), wveHF W)
He ) ={vlveH™(); D'v(x1)=0,1=0, - -, m—1};

in other words, B(-, -) is strongly coercive.
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For some partition A of I defined by (1.2) and some integer k =2m — 1, we define
the finite element space
(2.3) ME™(A) ={V|VeHFU); VeP(I),j=1,--,N}

The solution u of (2.1) can be approximated in M {;"”(A) by the solution U of
the weak Galerkin form

(2.4) BWU,V)=(f,V), VeM§™Q).
If ue H**'(I)NHT (I), the error function ¢ = u — U has the bounds 21, [4]

”e“l éChk+l-lI|ul|k+1, l:O, s Lm,
23 IDe()l=Ch* fullers, =0+, m=1, j=1,--,N~1,
r=k+1-m.

What we want to prove is the fact that inside each segment I; there exist
n =k +1—2m distinct and specific points where |e(x)| is of O (k *2) one order better
than the optimal order of convergence. This is, of course, only true, if n =1 or k =2m.
These points are shown to be the zeros of the Jacobi poynomial P;;"™ (o), which will
be introduced in the next section.

Remark. For reasons of convenience, we confine ourselves to the case that L is
a self-adjoint operator and that A is a uniform partition of I. The results in § 2,
however, are also valid if A is quasi-uniform (i.e. max 4; = A min h; A independent of
the mesh) and if L is a skew-adjoint operator of the form

Lu=7Y% (—1)iDi[ h) pii(x)Dju],
i=0 i=0
provided that, of course B( , ) defined by
B(u,v)=Y ¥ (p;D’u, D'v)
i=0 j=0
is strongly coercive.

2.1. The Jacobi polynomial. The Jacobi polynomial Pf (o) is defined by
Rodrigues’ formula [1] as

Py (o) =[w(@)] 'D"[1-a})"'w()]Ar?, nz0,
wio)=(1-a)*(1+a)%, aB>-1,

where A%® is some normalizing factor, e.g., such that Py®(1)=1 or PyP(1)=
(1+a)1+a/2) - (1+a/n). It has the important property

2.7) wWP®, PiP) = 8;(wPi®, PP, 0=i,j,
7

(2.6)

where §;; is the Kronecker symbol.

From now on, we are only interested in the case « =8 =m, where m is some
nonnegative integer. In that case, we replace the double superscript m, m by the single
superscript m.

LeEMMA 1. Let the linear interpolation 11: C YI) > Puyam-1(I) be determined by

D' 1) =Df(x1), 1=0,--,m~-1,

(2.8) . . )
IIf)oim) =f(on), i=1,-+-,n,
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20m+n)
where o i=1,- -, n are the zeros of P (o). Then, for fe W= ™" (I'), we have the
approximation

+1 +1

| fio)do = (o) do+RumD™F(E), €€ (-1, +1),
-1 -1

) 2m +n)!
[enPer+1)’

r=m+n=k+1—-m.

(2.9) Ry = (=1)"2%"

This is a generalization of Legendre (m =0) and Lobatto quadrature (m = 1).
Proof. From (2.8), it follows that there exists a function g(o) such that

(2.10) (f-Tpo) =(1-0)"Pr(0)g(0).
From the orthogonality relation (2.7), we learn that
(f-TIf, I)=0, ifgeP.1(I),

which means that for f € P,,-,(I), the quadrature error is zero. For any other f € W),
it is clear that
+1

+1
(2.11) L (f~Ti)o) do = (f-F)do,

where F € P,,_,(I) is some Hermite approximation of f which satisfies the relations
(2.8) with IIf replaced by F. The rest of the proof follows from the theory of Ciarlet
and Raviart [6]. For the evaluation of R,,, we refer to the appendix. U

Elaboration of (2.8) gives the formula

+1

212) [ (e)dr="T [0aDF(-)+6aD' 1)+ £ wifloi),

with
+1 A 2ympm
w=| ®@)do, dio)=—— G ,
-1 (o —onl(1-c9)"dP; (o) /do ] =0t
+1
(213) 6“ = J—l ¢li(a) dU" d/li EPk (I),

Yulojp)=0, [1=0,---,m-1, i=12, j=1,---,n,
DYu((-1))=8;8,, 1=i,j<2, £€sls=m-1.

Note that in (2.13), ® and ¥ are natural basis functions for Hermite interpolation
andoj,,j=1,---,n are the zeros of Py (o).

In the next section, we will use (2.9)-(2.12) to establish superconvergence of
O(k**?) at the Jacobi points.

2.2. Superconvergence at Jacobi points. We return to problem (2.1) and its
Ritz-Galerkin solution (2.4). It is standard that

(2.14) Ble, V)=0, VeME™().
For k =2m, we define for any I; the n-dimensional subspace So(I;) of M&™ (A) by
(2.15) Soll;)={V|V eHg (I) N Pc(I;); supp (V)=I;}.
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For So(I;), a basis can be constructed, consisting of the Lagrange polynomials ¢;(x)
defined by
(2.16) $:i(x)=®,(1+2(x ~x,)/h), i=1,---,n,
where @, is defined by (2.13).
If we apply (2.14) to ¢;, we obtain after partial integration

m

-1
(2.17) (e, Léi) = l§1 Eo [(—1)"+1D1_"1e(x)D"(p,(x)D'(bi(x))];;_‘, i=1,-+,n.

v

We now define the interior nodal points £; by
h
(2.18) fﬂ=xi_1+5(l+a';:), I=1,--+,n,

where o, is the [th zero of P}, (o), as defined in § 2.1.
Application of Lemma 1 to (e, L¢;) combined with the use of (2.17) gives

m [-1

h s + —v- v x;
5 Lwe@lsgn=T T (DD D" (px)D'ix)L,

1+1

m-1 2 h
(2.19) -y s 0,,D’(eL¢i>(x,-2+u)(-2-)
1

=0 v=
2r+1

- (g) Rm"[Dzr(eL¢i)]x=se1,, i=1,--,n,

where R, is defined by (2.9). If we multiply both sides of (2.19) by 24>™ " and apply
formula (2.5), we have

n m—1 .
¥ [sz@(fﬂ)hz"‘]e(fﬂ)I =G ¥ (ID'e (x;-1)| +|D'e (x)]) + C2h***|leL il
=1 =
(2.20) = A |ulless + Coh* ellwaray-

We need an estimate of |le]w2). To that end, we define the projection Tla: H o Hn
W *(I)»Mg™ (A) by

Maw)&) =ul&), j=1,--+.N, I=1,---,n
D'(au)(x;)=D'ulx;), j=0,--+,N, 1=0,---,m—1

Then we have

(2.21)

llellwzrry = lle lwzay + 18w,

(2.22) e=u ‘—HAu, S=U —HAu, 8 EM’S‘"‘ (A).

Since for any x € I, we have (see [6])

! D' (u)x], I>k,
(2.23) I fs(x)‘g{Chk“_l"Dk“u"L“"m)’ [=k,
and since
18llwry=Ch ™ [I8ll=u)
=Ch *[llelle=u, +lell=ay] (Poincaré’s inequality)
(2.24)

=Ch ™ [llel + Cih*ullwsray]
= Cllullcs1 + Cihllullwea);
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it turns out that

(2.25) lle w2y = lle w2y + 6 llweay = Cllulle+1 + lullw2ray)

and hence

(2.26) T [wiLdi(&eh® e (&e)| = Ch  (lulless +lullweay)-
I=1

Remark. In (2.24), we used the property
RViway SCh | Viwa, — VeP), 0=il=k.
On the other hand, if we apply Lemma 1 to the inner product
(2.27) 212" (), L) = 21" B(¢5, 1),
we find that
228)  RA™'B(ds 1)~k woiLdi(&)| = Ch>* liLdillway = Ch?,

which means that (h>"wLé:(&)) is an O (h?) perturbation of a positive definite matrix
whose entries are of O(1).

If we present (h*"wLi(&.)) and (2h 2m-1B (¢, de)) by My and M, respectively,
we find that, since M5 exists and is of O(1) (this follows from the strong coercivity
of B),

(2.29) M, =M, +h*M; = Mo(I +h*M35 " M3) = My(I +h*M,),

where the entries of M, are of O(1). Elementary matrix calculus shows that (I +
h>M,)"" exists, if & is small enough, and can be expanded in a power series:

(2.30) I+h’M) = li -1)'n*M.

This implies that (h2"‘a>,L¢.~(f,‘l))'1 exists and has entries of O(1). This completes the
proof of
THEOREM 1. Let uc Hy I)NH " I)N W? (A) be the solution of (2.1) and let

UeME™(A) be the solution of (2.4). Then e=u—U has the bounds (2.5) and the
additional bound

(2.31) le@EI=C@h >, j=1,---,N, I=1,---,n,

where & is defined by (2.18).
We can use the local convergence properties (2.5) and (2.31) to establish supercon-

vergence properties of De at interior points of I.. Let £ (x) be defined by (2.22). Then
on any [}, € (x) has the representation

— k+1 _ 2ympm )
(2.32) e(x)=h""(1-0*)"P7 (0)E;(x),

2 _ S |
o =E(x =X, % =5(x1‘—1 +x;),

where E; ()f) and Ej(x) have bounds depending on j only. This property can be proved
by expanding u and [I,u as Taylor series around %,
Differentiating (2.32), we obtain

(2.33) s'(x)=hk+1E}(x)(1—o*z)mPn"‘(o-)+2th,~(x)zi%_-(1—az)mPT(a).
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From (2.6) and [1, Formula 22.6.1], it can be proved that

Pl (o) =Amn§*PT$f (o),
(2.34) 7
d md o
3;[(1—06 EPmd(o)]=Bm<1—a2)'"“‘Pr:l‘(a>,

:\lllhire An and B,,, depend on m and n only. From (2.33) and (2.34) we can conclude
a

/ =O k+1 . —
(2.35) le’(x)l=O(h*™) if x=my,

m~1

h )
nﬂ=x,--1+5(1+m,,+1 , j=1,--- N, I=1,--+ n+1.

Consider now § defined by (2.22). From (2.5) and Theorem 1, it is proved that
(2.36) 18l =C)h*™2,  ||8lr=w = Cu)h**.

From (2.35)-(2.36), one easily proves

THEOREM 2. Let the conditions of Theorem 1 hold. Then e(x) has the additional
bound
(2.37) IDe (n)| = C(u)h“™,

where mjis defined by (2.35). This is one order better than the optimal order of convergence
for e’ (x).

2.3. Quadrature rules. Without giving proofs, we state that all the local conver-
gence properties from the Theorems 1 and 2 are preserved whenever (-, +) is replaced
by some approximating quadrature (-, -), which is of O(h%), q=2r, i.e.,

‘(a’B)_(a,B)hléc(a,B)hq, q-32r

Examples are the extended r-point Gauss-Legendre rule or the extended (r + 1)-point
Lobatto rule.

3. Collocation methods. We consider the mth order boundary problem

Lu(x)sp"‘u(x)+mi1 px)Dux)=fx), xel,
i=0

3.1
( ) Bl[u]zo’ l=11“':m1

where po, - - - , Pm—1 and f are sufficiently smooth functions and where B4, - - -, Bm are
continuous linear functionals over C™ '(I). We note that the functions po, * * * , Pm-1
and f and the operator L are not the same as in the previous section. We assume
that (3.1) has a unique solution and that By, - , Bm are linearly independent over
P,._.(I)=ker (D™).

Let A be a partition of I defined by (1.2). Then, for k Zz2m —1, we define the
finite element space Skm(A) by

SkmAy={V|VeCs ' I); VeP),j=1,-,N}

3-2) cr () ={plveC™'(I); Bilv]=0,1=1,- -, m}.

The collocation solution U € S§™(4) of (3.1) is defined as follows.
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For r =k +1—m, we define the collocation points z; by

h .
(3.3) zp=xj-1%3 “(+oy), =1 N =1

where {o2} are the zeros of the rth degree Legendre polynomial P%(g). Then U is
determined by the linear system

(3.4) LUG)=f(zn), =1, N, I=1,---,r
fueCr Y (I)NC** ™ (I), the error function e =u —U has the bounds [5]
lelwin = Ci@h ™, 1=0,---,m

|De(x,)|<C2(uh2r [=0,---,m-1, j=0,--,N.

In order to establish superconvergence at interior points of I; [8], we recall the
n-dimensional subspace So(f;) of Skm™(A) defined by (2.15). For any V €So(l;), we
have, if we put p,(x)=1,

(3.5)

m -1

(3.6) e, LLV)=(Le,LV)+ Y ¥ (-1)""[D'™'eD*(pLV)]3_,,

I=1v=0

where the operator L” is defined by
3.7) L =3 (-1/D'(pw).

If we apply Lemma 1 to the left-hand side of (3.6), we have

n 1+1
g wie(&)LLV (&) + Z (61D (eL"LV)(x;- 1)+ 6D (eL LV)(x,)]( )

(3.8

2r+1

h rel2r
—(e,L'L V)—Rmn(5> R HDY (LTLV )¢ e I,

where R, is defined by (2.9).

If we apply the r-point Gauss-Legendre rule to the first term of the right-hand
side of (3.6), we obtain ([1, formula 25.4.29])

glé AuLe(zq)LV (z7)=(Le, LV)~S,h**'D¥ (LeLV)(¢ e I),
(3.9)
PR )
ToRr+ D)

In virtue of (3.4), the left-hand side of (3.9) is identically zero. If we combine (3.7)-(3.9)

and apply it for the Lagrange basis functions ¢; of So(I;) as defined by (2.16), we get
after multiplication by 2h*™

=1w1LTL¢,~(§,-,)h2'"e<£,~,) ]

m-—1
<

=Ci T (D'e(x-1)] +[D'e(x;))
(3.10) )

m m-1 1
A lgo [ollDl(eLTL@)(xf—ﬂ+012DI(GLTL¢i)(Xj)](§) l

+ C2h2k +2["€LTL¢;‘|IW2P(1}) + ”LeLqSi"WZ'(I’)] = C(u )h k+2’

i=1,---,n
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Analogously to (2.28), we can prove that
(3.11) oL "Lepi (&0)R*™ — 20> (Lopi, Lepy)| = CR>,

which means that, for sufficiently small h, the matrix (w,L7Lé;(£)) is an O(h*)
Perturbation of the positive definite matrix (2h2'""1(L¢,-, L), whose eigenvalues and
entries are of O(1). This implies that the entries of (w,L Le;(&)h*™)™" are of O(1).

THEOREM 3. Let u e C§  (I)NC**™(I) be the solution of (3.1) and let Ue

S&™(A) be the solution of (3.4). Then e(x)=u(x)— U (x) has the bounds (3.5) plus the
bounds

D=Cwh 3, j=1,---,N, I=1,---,n,
(3.12) le (&)l =Cu) ] n

|IDem)|=Cw)R**', j=1,--- N, I=1,---,n+1,

where & and m;; are given by (2.18) and (2.35), respectively.

Proof. The first part of (3.12) was already established by (3.9)-(3.11). The second
part is proved analogously to Theorem 2. O

Remark. Russell and Christiansen [8] also gave a proof of (3.12); they proved
in another way that the first bound of (3.12) occurs at the interior zeros of the
polynomial

(3.13) [ e—orpwa, o=2—x)-1,
-1

which can be shown to be equal to (1-o%)™P7"™(c) up to a constant factor. The
proof of this equality can be given by using formula (2.6) witha = 8 =0 and elaborating
the integral (3.13) which gives the desired result.

4. Conclusions. In this paper, it was proved for two classes of Galerkin methods
that superconvergence also occurs outside the knots of the partition, albeit in a more
modest form. Its existence can easily be proved for other classes of problems which
are solved by the Ritz—Galerkin or the collocation method. Examples are nonlinear
two-point boundary problems and parabolic equations in one space variable [4].

The interior superconvergence is especially important if the finite element space
is of degree 2m, because the order of convergence at &; is then the same as at x;.

Appendix. For the computation of R,,. from (2.9), we apply that relation to
f € P,.(I) defined by

(A1) fl@)=Q1=-a)"[P7 ()T,

where we assume that P (o) is normalized in such a way that (see [1, formula 22.2.1])
+

(A2) P:."(1)=(” n’").

From [1, formula 22.2.1], we learn that

22" (r)?
Q@r+Dnl(n+2m)V
From [1, formulas 22.5.42 and 15.1.1], we learn that

+1
(A3) L £(0) dor = homn =

mo o (nFm\ 5 (mn)(n+2m+1) 1o\
P"“”‘( n ),Eo (1+m)ek! (2 )

(Ad) (@a)=1,

_al@+l)---(a+k-1)
- k! ’

(@) k>0,
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. 2r . . .
which means that the coefficient of & * in the expression of f is equal to

b2r = (..1)'"A3,

n+m\ (=n)u(n+2m+1), 1y
A"=( n > (L+m)n! )
(AS) (n+m)! (n+2m+1)(n+2m+2)---(2n+2m)2_n
~ Taim! . (m+1) m+2) -+ (m+n)
_af20+2m
=2 ( n )

Application of (2.9) to f shows that
+

+1 1
(A8) P = L flo) do = j Tf do + RonD *'f(£) = 0+ R (2r)! b2,

-1
which implies that

Ponn
(A7) Ronn = (2r)bay

Application of (A3) and (A5) to (A7) delivers the desired expression for R
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